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6.1
Historical Background of Non-Euclidean Geometry

6.2
An Improbable Logical Case

About 575 B.C. Pythagoras wrote his book on Geometry.  Some of the material was known in other cultures centuries before he wrote it down, of course.  His was the first axiomatic approach to organizing the material.  Interestingly, he did as much work as he could before introducing the Parallel Postulate.  Many people have interpreted this progression in his work as indicating a level of discomfort with the Parallel Postulate.  It’s not really possible to know what he was really thinking.  About 400 years after the birth of Christ, Proclus, a Greek philosopher and head of Plato’s Academy, wrote a “proof” that derived the Parallel Postulate from the first 4 Postulates. thereby setting the tone for research in Geometry for the next 1400 years.  Johann Gauss, the great German mathematician, actually realized that there was another choice of axiom but didn’t choose to publish his work for fear of getting into the same trouble as other scholars had with the Catholic Church.

Around 1830, two young mathematicians published works on Hyperbolic Geometry – independently of one another.  The world took no note of them.  In 1868, the Italian Beltrami found the first model of Hyperbolic Geometry and in 1882, Henri Poincare developed the model we’ll study.

120 years later, Hyperbolic Geometry is finally making it into high school textbooks.  My favorite is a text that St. Pius X used in the 90’s.  If you ever get a chance to look at it – it’s just terrific.  And it includes a section on Spherical Geometry as well:  

Geometry, second edition by Harold Jacobs.  ISBN:  0-7167-1745-X (copyright 1987).
Note that St. Pius isn’t a flagship diocese school – they actually have a very full section of “Algebra half”, the course for the kids not ready for Algebra I.

In the 1400 years of work on the axioms of Absolute Geometry there was always a special group of people who endeavored to prove that the Parallel Postulate was actually a theorem.  In fact, Saccheri and Lambert who both came so close to realizing that there was an alternate geometry out there waiting to be discovered never got all the way past believing that the axiom was a theorem.  On page 427 is a list of statements that are equivalent to P1, the Euclidean Parallel Postulate.  Here they are:

· The area of a triangle can be made arbitrarily large.

· The angle sum of all triangles is a constant.

· The angle sum of any triangle is 180.

· Rectangles exist.

· A circle can be passed through any 3 noncollinear points.

· Given an interior point of a angle, a line can be drawn through that point intersecting both sides of the angle.

· Two parallel lines are everywhere equidistant.

· The perpendicular distance from one of two parallel lines to the other is always bounded.

In the Hyperbolic Workbook section, I’ll ask you for illustrations from the Hyperbolic sketches in Sketchpad that show that each of these is NOT true in Hyperbolic Geometry.

Lemma A





page 430

Let (ABC be given with M the midpoint of side 
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.  If the angle sum of (ABC is less than 180 then so is the angle sum of both sub-triangles, (ABM and (AMC, created by the median 
[image: image2.wmf]AM

.

This is a proof in Absolute Geometry.  The proof in the text is well done and I won’t repeat it here.  Let’s focus, instead, on what this is really saying.  It means that you cannot “push” degrees from one sub-triangle to another to get one that is Euclidean and one that is not.  For example, suppose 
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 = 160 and you set it up so that you divide (ABC into two sub-triangles – you cannot fix the median so one subtriangle is somehow “normal” and the other is really, really off.  Both subtriangles will have less than 180 degrees.

Lemma B
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If (ABC has a cevian from vertex A to side 
[image: image4.wmf]BC

 and the angle sum of a subtriangle created by another cevian between the side of the triangle and the given cevian is less than 180, then the angle sum of the larger triangle is also less than 180.

So, if a subtriangle has angle sum less than 180, the triangle that contains is also one that has an angle sum less than 180.  This is the “other side” of Lemma A.  You can’t subdivide into a Euclidean and non-Euclidean NOR can you take an non-Euclidean triangle and have a triangle that contains is being Euclidean.

Theorem 6.1.1
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Let (ABC be given with 
[image: image5.wmf]AD

any cevian from vertex A to side 
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.  If the angle sum of (ABC is less than 180, then any subtriangle created by the cevian also has angle sum less than 180.

Notice that all the hard work has been done in the two Lemmas.  The proof is quite short.


Homework hints 6.2
Problem 2
You may have to provide more than a “simple” explanation for them, but the theorems, lemmas, and comments are in Chapter 4.

Problem 8
the hint is in the book

6.3

Hyperbolic Geometry:  Angle Sum Theorem
So now let’s adopt 

Axiom P-2 Hyperbolic Parallel Postulate


page 436

If L is any line and P any point not on L, there exists more than one line through P parallel to L.

Theorem 6.3.1
Angle Sum Theorem for Hyperbolic Geometry

page 436

The sum of the measures of the angles of any right triangle is less than 180.

The crux of the proof is the construction of (W.  It is to measure less than the angle between distinct parallel lines M and N.  This can be done and I’ve had you skip that problem because it is so tedious.  Just take it as a given, ok?

Corollary
The sum of the measures of the angles of any triangle is less than 180.

Now the difference of 180 and the sum of the measures of a Hyperbolic triangle is called the defect (  ) of the triangle.

Every Hyperbolic polygon has a defect.  In Euclidean Geometry the sum of the angles of an n-sided polygon (n-gon) is 180(n ( 2).  So the defect of any Hyperbolic n-gon is the difference of the standard Euclidean number for the sum and the sum of the measures of the angles of the Hyperbolic n-gon at hand.

The area of a polygon in Hyperbolic Geometry is a function of the angle measures (just like in Spherical Geometry).  For each Hyperbolic plane there is a shape factor, k. that is given and constant (often the shape factor is k = 
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, but not always. 

The area of an n-gon is the given shape factor times the defect.

Lemma:
If 
[image: image8.wmf]AD

is a cevian of (ABC and  and   denote the defects of the sub-triangles (ABD and (ADC, then the defect of (ABC = 

In other words, defects are additive.  The proof is pretty clever.

Examples 1 and 2 are fairly typical problems.

Theorem 6.3.2

AAA Congruence Criterion for Hyperbolic Geometry
page 440

If two triangles have the three angles of one congruent, respectively, to the three angles of the other, then the triangles are congruent.

This relies on the feeling that congruent triangles have the same area.  In Hyperbolic Geometry, area is a function of angle measure so that if corresponding angles have the same measure, then the defects of the two triangles will be identical.

Corollary

There are no similar triangles in Hyperbolic Geometry.  If they are similar, then they are congruent.  The notion of similar being somewhat different than congruent does not exist.

The Moment for Discovery that is a guided proof of this is a homework exercise.

6.3 ½
Hyperbolic Geometry Workbook
The Poincare model for Hyperbolic Geometry is the following:

Points are normal Euclidean points in the Cartesian Plane that are included in a disc:



{(x, y)(
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[We usually pick r = 1.]
The points of the circle that encloses the disc are NOT points of Hyperbolic Geometry nor are any points exterior to the circle.

Lines are arcs of orthogonal circles to the given circle.  A circle that is orthogonal to the given circle intersects it in two points and tangent lines to each circle at the point of intersection are perpendicular.  Note that diameters of the disc are lines in this space even though they don’t look like arcs; each diameter is said to be an arc of a circle with a center at infinity.
There is a very good description of how to get the formula for a circle orthogonal to the Unit Circle on page 448.  It is also a narrative proof that two points determine a line.  Thus we have a nice verification that our first axiom holds in Hyperbolic Geometry – which it should, of course.  All the axioms, definitions, and theorems up to the decision about parallel lines hold in BOTH geometries.
To show that two points determine a line:

You pick two points, A and B, from the interior of the Unit Circle and substitute their Cartesian coordinates into 
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.  You will get two equations with two unknowns, a and b.  If you solve the system, you will have an equation for a circle that is orthogonal to the unit circle and includes points A and B.  The arc of this orthogonal circle determined by A and B is a line in the Hyperbolic geometry of the Unit Disc.

For example, suppose you have the points (½, 0) and (½, ½).  Let’s get the equation of the orthogonal circle to the Unit Circle that contains these two points.  If I substitute the coordinates of the first point in the equation I get 
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Now substituting the coordinates of the second point and the value for a, you get
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So our equation is 
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[We’ll use this formula in Workbook Problem 3.]
Here’s a graph of this circle from Sketchpad.  Note the perpendicular tangent lines (you can draw these in – at both intersections).
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Enrichment 1:

Lines in our space:
[image: image15.emf]blue circle...not part of our space

This sketch depicts the hyperbolic plane H

2

 using the Poincaré disk model. In this model, a line through

two points is defined as the Euclidean arc passing through the points and perpendicular to the circle.

Use this document's custom tools to perform constructions on the hyperbolic plane, comparing your findings 

to equivalent constructions on the Euclidean plane.
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Here is a sketch from Sketchpad that shows hyperbolic line H
[image: image16.wmf]AB

 which is part of the Euclidean circle intersecting the big blue circle (the given circle that is the space boundary).  Sketch in the tangent lines to the blue circle and H
[image: image17.wmf]AB

.  Do you see that the tangent lines are perpendicular?

Hyperbolic line 
[image: image18.wmf]CD

is a diameter of the blue circle.  It, too, is a line in our space.  Draw in the tangents and you’ll see why.

To find this space in Sketchpad:  open the Sketchpad Program files, select Samples/Sketches/Investigations/PoincareDisk.  You have to use the sketching tools under the double headed arrow down the vertical left menu to construct lines and measure angles and such – you must not use the tools on the upper toolbar (those are Euclidean tools).  [You might have to start with My Computer/local disk/Program files/Sketchpad, etc. – it depends on how the tech loaded Sketchpad in the first place – it IS worth finding, though.]
Enrichment 2:

Parallel Lines in Hyperbolic Geometry
[image: image1.wmf]BC


H
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 is parallel to every other line showing in the disc.

Since H
[image: image20.wmf]AB

 intersects H
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 on the circle, these two have a type of parallelism called “asymptotically parallel”.

H
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 and H
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 are “divergently parallel” to H
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 .
So we have H
[image: image25.wmf]AB

 and a point not on it: Point D and we have 3 lines parallel to H
[image: image26.wmf]AB

 through D right there on the sketch.  This illustrates our choice of parallel axiom.  And we now have two types of parallelism:  asymptotic and divergent.
Do Workbook Problem 1 right now.

Let’s check some axioms, theorems, and definitions just to make sure they’re still true.  You know they’re true, but seeing it is helpful.
Enrichment 3:
Vertical angles are congruent.  
(2.5.5 page 99)
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I put points I and J on with the Euclidean tool bar “points on arc” at the top of the page AND I measured these angles using the Hyperbolic Angle Measure from the tool bar on the left under the double-headed arrow.

Enrichment 4:

Triangles and Exterior Angles
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Yes, we have triangles.  No, the sum of the interior angles is not equal to 180; it is LESS THAN 180 as promised by the Saccheri-Legendre Theorem (3.7.3 page 189).  The difference between 180 and the sum of the interior angles of a given Hyperbolic triangle is called the DEFECT of the triangle.  In Spherical geometry the difference between the sum of the interior angles of a spherical triangle and 180 is called the EXCESS of the triangle.
And, as promised in the Exterior Angle Inequality Theorem (3.4.1 page 156), the exterior angle ((LBM in our example above) has a greater measure than either remote interior angle.   Thus this theorem is true in both Euclidean and Hyperbolic geometry.

In fact, its measure is greater than their sum (very non-Euclidean here – remember ALL the facts in Chapter 4 are Euclidean facts and NOT applicable here in Hyperbolic Geometry).  The Euclidean Exterior Angle Equality Theorem (4.1.3, page 217) is a Euclidean theorem not a Hyperbolic Theorem.
Note that the defect of the triangle is 58.6. (The sum of the angles is 121.4)  We use the lower case Greek letter delta for defect (  ).    The area of a Hyperbolic triangle is k where k is a given shape constant for a disc.  Let’s suppose k for this disc is 3.5.  Then the area of this triangle is 3.5(58.6) = 205.1.  Any triangle in this disc with this defect has this area.
Do Workbook Problem 2 right now.
Enrichment 5:
Right triangles 
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Here’s a right triangle – the measures of the angles are shown.  I built it using an H
[image: image28.wmf]AB

 and the Hperpendicular bisector of that line (again:  Hyperbolic tools on the left menu).
 = 54.3

Does the Pythagorean Theorem hold in Hyperbolic Geometry?  
Demonstrably not – see the calculations in the sketch.
Enrichment 6:

 Distance

The distance (metric) axioms are in 2.4 (pages 77 – 87)
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Measure the following distance in Euclidean Geometry:

AM

AN

BM

BN

You use these Euclidean measurements to calculate the Hyperbolic distance with a formula:

the Hdistance from A to B is 
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 is called the “cross product”.  

The absolute value of the natural log of  the “cross product” is a very clever way to measure distances.  

Let’s look at some consequences of this formula.
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Here’s a picture with Hyperbolic distances on the left and Euclidean distances on the right.  The hyperbolic distances were measured using the hyperbolic distance tool on the left and the Euclidean distances were measured using the Euclidean distance tool on the top menu.    On the right, the calculation for Hyperbolic distance is shown.  Remember that the calculation uses Euclidean distances.  The Hyperbolic tools do the calculation automatically for you.
In Euclidean Geometry the distance between points on a segment is fixed and independent of location in the plane.  In Hyperbolic Geometry, however, you have an interesting stretching of calculated distances that depends on whether the points are close to the center of the disc or close to the edge of the disc.  Points can be the SAME Euclidean distance apart and have different Hyperbolic distances depending on their location in the disc.  This is a function of the distance formula.
Here’s an illustration with two points that are .09 apart in Eucildean geometry and located in two different spots in the disc.  Note that the Hyperbolic distances are different and the points are further apart out near the edge of the disc.
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Euclidean distance 
.09 

Hyperbolic distance 
.52
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Euclidean distance 

.09

Hyperbolic distance

.12

Notice that the Hyperbolic distance depends on WHERE you are in the disc.  Points that are the same Euclidean distance apart in different locations on the disc are different Hyperbolic distances apart.  Problems 3 and 4 in the Workbook Homework explores this fact.
Enrichment 7:

Quadrilaterals

[image: image35.emf]mJHG = 51.0

mIGH = 51.1

GH = 2.59

IJ = 1.97

mHJI = 90.0

mGIJ = 90.0

JH = 0.93

GI = 0.93

Poincaré Disk Model

Disk Controls

J

I

G H


This is the only kind of quadrilateral that you can have in all 3 of the big geometries:

a Saccheri quadrilateral.

Review the definition and the properties in 3.7 pages 186 – 190.

Do Problem 5 in the Workbook now.

Enrichment 8:
Each of the following is logically equivalent tot the Euclidean Parallel Postulate.  Thus each of the following are NOT true in Hyperbolic Geometry.  I’ve illustrated below how one equivalence is not true in HG.  The others are Workbook Problem 5.
· The area of a triangle can be made arbitrarily large.

· The angle sum of all triangles is a constant.

· The angle sum of any triangle is 180.

· Rectangles exist.

· A circle can be passed through any 3 noncollinear points.

· Given an interior point of a circle, a line can be drawn through that point intersecting both sides of the angle.

· The perpendicular distance from one of two parallel lines to the other is always bounded.

Illustration:

· Two parallel lines are everywhere equidistant.
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 using the Poincaré disk model. In this model, a line through

two points is defined as the Euclidean arc passing through the points and perpendicular to the circle.

Use this document's custom tools to perform constructions on the hyperbolic plane, comparing your findings 

to equivalent constructions on the Euclidean plane.
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Homework hints:

6.3
Enrichment 1
Moment for Discovery
page 441

Problem 2

Problem 8

Problem 14

Workbook Homework, attached.

Hyperbolic Workbook Homework

Problem 1
Lines and Parallelism

List the objects that are lines in this space.  List the pairs of lines that are asymptotically parallel and those pairs that are divergently parallel.
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Problem 2
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What are the measurements of the 6 exterior angles to (GHI ?

What is the defect of the triangle?

If the shape factor, k, is 1.3, what is the area of (GHI?

Problem 3
Distances

We will use the Unit Circle, and the x-axis as our Hline.
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We will find the distance from D to E using the formula.  I’ll do one as an example.

If D has the Cartesian coordinates (1/3, 0) and E has the Cartesian coordinates (3/5, 0), then they are 4/15 
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 .267 apart in Euclidean Geometry.
The Hdistance from D to E is 
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DA is 4/3.

EB is 2/5.

DB is 2/3.

EA is 8/5.

Putting these together in the cross product:


[image: image43.wmf]42

1

35

28

2

35

×

=

×


And the absolute value of ln (.5) is approximately .69, the Hdistance.
Now, I’m going to give you 5 points.  Fill in the following chart with both the Euclidean Distances and the Hyperbolic Distances and draw a conclusion about Hyperbolic Distance and location in the disc.

	
	Points
	Distances
	Euclidean d
	Hyperbolic d

	P0
	(0, 0)
	NA
	
	

	P1
	(1/3, 0)
	P0 to P1
	
	

	P2
	(3/5, 0)
	P1 to P2
	
	

	P3
	(7/9, 0)
	P2 to P3
	
	

	P4
	(15/17, 0)
	P3 to P4
	
	

	P5
	(31/33, 0)
	P4 to P5
	
	


What do you observe about the distances as you move further from the center of the disc?

Problem 4
Find the Hdistances 

d1 from (0, 0) to ( ½, 0)

d2 from (1/2, 0)  to (15/16, 0)

d3 from ( ½, 0) to (½,½)

What does this tell you about Hyperbolic distances?  

Sketch the Unit disc in Euclidean Geometry, put these points in (as “to scale” as you can) and put both the Hyperbolic and Euclidean distances on your sketch in textboxes.  [Sketchpad has a graphing utility that only graphs functions.  Sketch the top half of the circle and then the bottom half as a separate function on the same sketch.  The background grid will provide the most of the points.]
Recall that the formula for the orthogonal line containing the points for d3 is in the text earlier.

Problem 5
Saccheri Quadrilaterals

Fill in the following chart

	Geometry
	Summit angles type

(acute, right, obtuse)
	Summit to base comparison (<, >, =)

	Euclidean
	
	

	Spherical
	
	

	Hyperbolic
	
	


Problem 6
Do one illustration per page showing that the following are simply not true in HG.

· The area of a triangle can be made arbitrarily large.

· The angle sum of all triangles is a constant.

· The angle sum of any triangle is 180.

· Rectangles exist.

· A circle can be passed through any 3 noncollinear points.

· Given an interior point of a circle, a line can be drawn through that point intersecting both sides of the angle.

· The perpendicular distance from one of two parallel lines to the other is always bounded.
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